A Self-Reflective Design Study of Three Visio and Visio-Haptic Artifacts For Use in Mechanical Engineering Design Education

MSc Thesis Defense James Dillon Sykes, P.Eng.

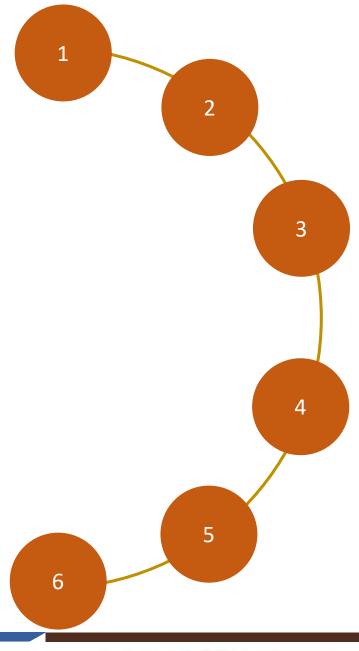
March 24th, 2023

Welcome

Chair

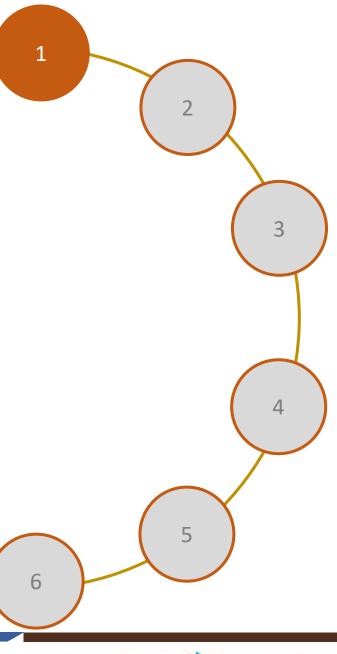
• Dr Jason Morrison (Price Faculty of Engineering)

Committee


- Dr Jillian Seniuk Cicek, Advisor (Price Faculty of Engineering)
- Dr Marcia Friesen, Co-Advisor (Price Faculty of Engineering)
- Dr Zana Lutfiyya (Faculty of Education)
- Dr Philip Ferguson (Price Faculty of Engineering)

Guests

Overview

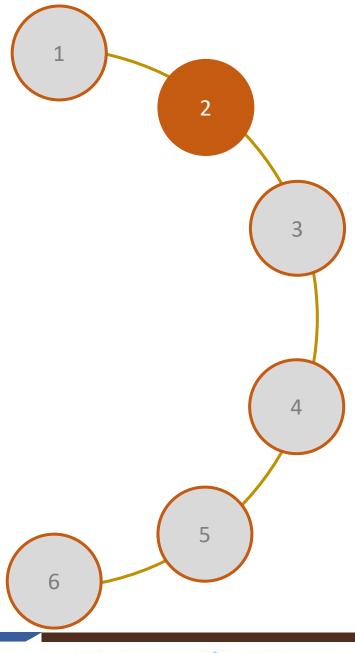

- 1 Introductions
- 2 Motivations
- 3 Gap Identification
- 4 Research Process
- 5 Outcomes
- 6 Future Work

1 Introductions

- 2 Motivations
- 3 Gap Identification
- 4 Research Process
- 5 Outcomes
- 6 Future Work

1 Introduction

Jim (James) Dillon Sykes, P.Eng


- B.Eng '93 Carleton University
- P.Eng (ON 1997-current, MB 2015-2022, BC 2013-2015)
- 12 years industry employment
- 17 years instructing & consulting GD&T in industry
- 6 years EiR Price Faculty of Engineering (2016-2021)

1 Introductions

2 Motivations

- 3 Gap Identification
- 4 Research Process
- 5 Outcomes
- 6 Future Work

Motivations

Carleton University, Undergraduate Studies

2

- Heavy emphasis on theory
- Absence of practical design skills / knowledge
 - Tolerancing
 - Materials selection
 - Design esoterica
 - Practical thermodynamics & heat transfer
- Strong systems thinking
- Rudimentary drafting skills
- Strong programming skills

Industry Employment

 Recognized that Engineering Degree did little to prepare for design application

- Informal apprenticeship
- SME (DFM, tooling, container threads, documentation, GD&T, ...)
- Devil's Advocacy
- Design Coach
- Unconventionality
- Fixer

•

Instructional Experience

- GD&T in industry (2006 present)
- EiR with Price Faculty of Engineering (2016-2021)
 - Advanced Graphical Communications (AGC) (2016-2021)
 - Mechanical Design Skills Workshop (MDSW) (2020)
 - Advise Mechanical Capstone teams
 - Advise UMSAE & Coach design, DFM, DFA
 - Coach EngComm teams (2018-2021)
- Coach EngComm teams (2022-2023)
- Coach Engineering Competition teams (2023)

A Self-Reflective Design Study of Three Visio and Visio-Haptic Artifacts for Use in Mechanical Engineering Design Education

University of Manitoba, Graduate Studies

Focused Studies On Teaching and Learning Engineering Design

Need academic credentials for acceptance as a voice of change

Felt unprepared for design practice

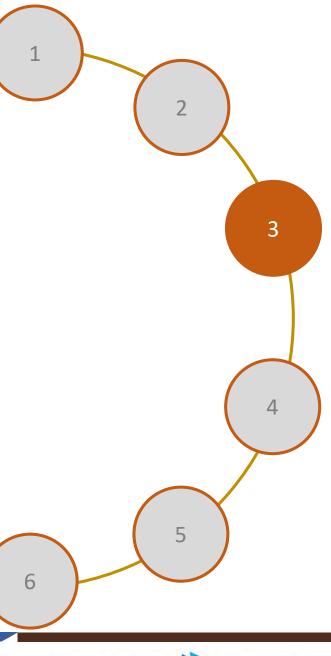
A Self-Reflective Design Study of Three Visio and Visio-Haptic Artifacts For Use in Mechanical Engineering Design Education **Confirmed** undergrad degrees don't prepare for design practice

Recognized design esoterica not taught in school

Understanding of magnitude can be taught

Industry feels new grads unprepared for design practice

Faculty largely indifferent to industry voice Absence of artifacts to teach tolerancing


Industry no longer has skillsets to teach design practice to new hires

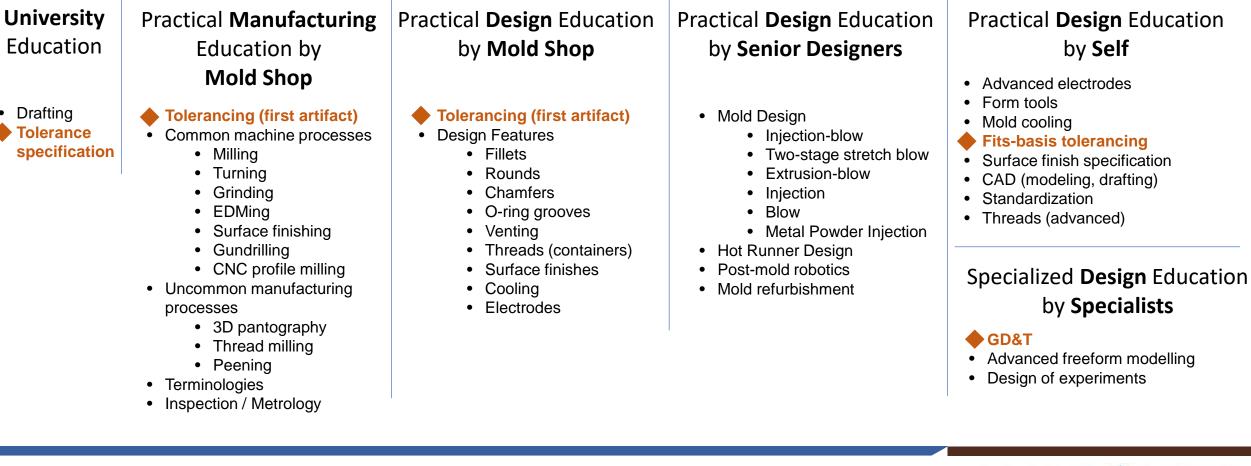
Research faculty no longer has skillsets to teach design practice

 Need to change how
 mechanical engineering design is taught

- 1 Introductions
- 2 Motivations
- 3 Gap Identification
- 4 Research Process
- 5 Outcomes
- 6 Future Work

Design Esoterica is a broad field describing **specialized design knowledge** that is not included in core mechanical engineering design courses.

Examples of Mechanical Engineering Design Esoterica:


- The use of chamfers, fillets, rounds
- Tolerance selection
- Standardized undercuts and tooling reliefs
- Material grade selection
- Terminologies

- Surface finish selection
- Metallurgical processes
- Design for manufacturing / assembly
- ...

Design Esoterica is essential to a complete product specification.

My Journey of Learning Mechanical Engineering Design Esoterica

University

Faculty of

Graduate Studies

Tolerancing is at the heart of what I instruct

Standards establish theory

Fits-basis tolerancing applies theory in a given context, but remains theoretical due to micron-scale tolerance magnitudes

Cognizance of tolerance magnitudes necessitates experiential artifacts

An Artifact is an item made by skill and used as a teaching example.

Visual comparisons of *identifiable* and *relatable* items can help establish cognizance of magnitude

1 sheet = 10µm (0.01mm)

Issue 1: Human vision threshold is 30-40µm

Issue 2: Clearance Fit gaps are as small as $2\mu m$

A Self-Reflective Design Study of Three Visio and Visio-Haptic Artifacts For Use in Mechanical Engineering Design Education

CC

Tolerancing is at the heart of what I instruct

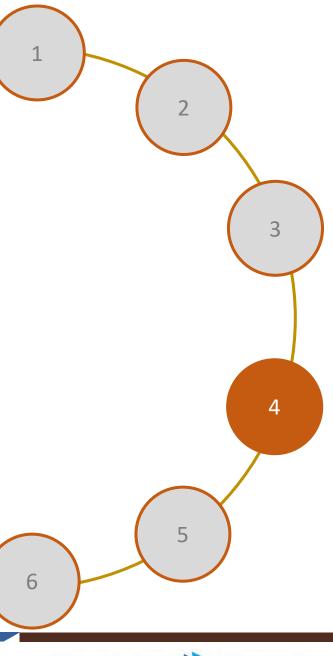
Standards establish theory

Fits-basis tolerancing applies theory in a given context, but remains theoretical due to micron-scale tolerance magnitudes

Cognizance of tolerance magnitudes necessitates experiential artifacts

Commercially-made micron-scale artifacts are not available

Designs for micron-scale artifacts are not available


Gap Identification

Absence of artifacts for developing cognizance of the magnitude of micron-scale tolerances as experienced in ASME B4.2 Fit-classifications.

Absence of recognition of the contributions of a design engineer's lived experiences in the design process.

- 1 Introductions
- 2 Motivations
- 3 Gap Identification
- 4 Research Process
- 5 Outcomes
- 6 Future Work

Study Type

A Self-Reflective Design Study

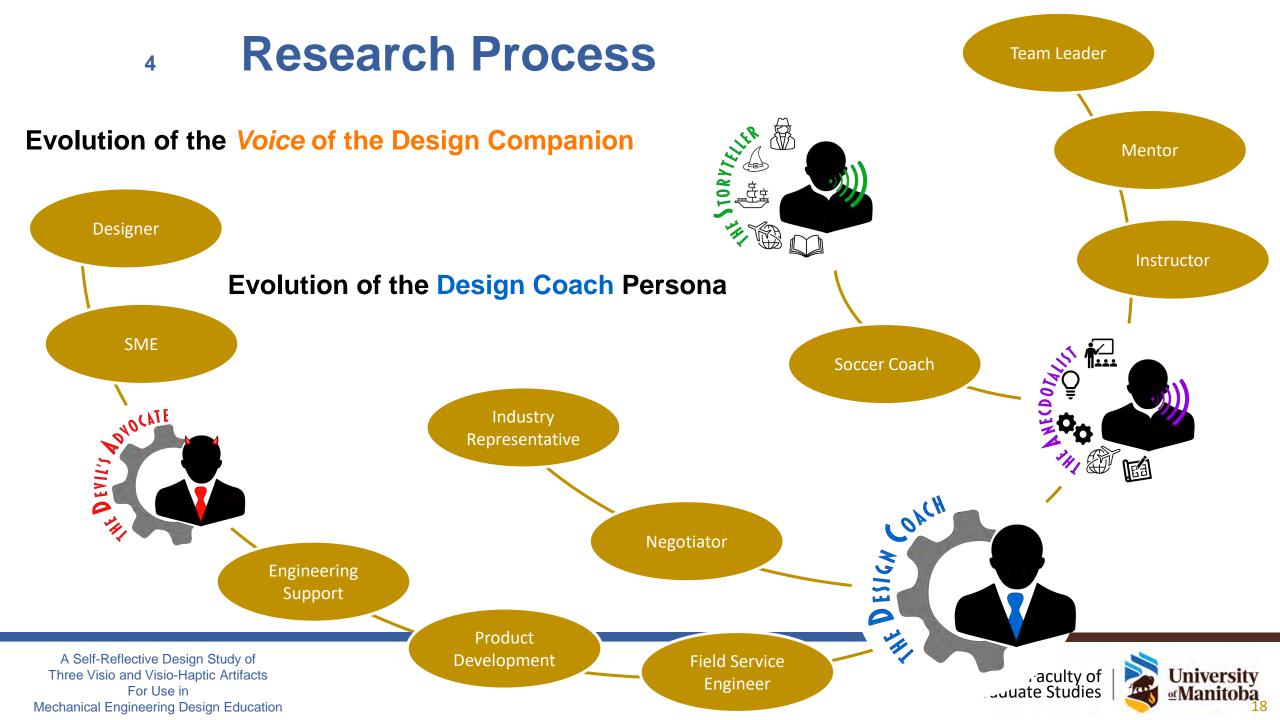
A hybrid of engineering design study and self-reflective study examining the role of lived experience behind the design thinking of three instructional artifacts.

Research Process A Self-Reflective Design Study

Study Purpose

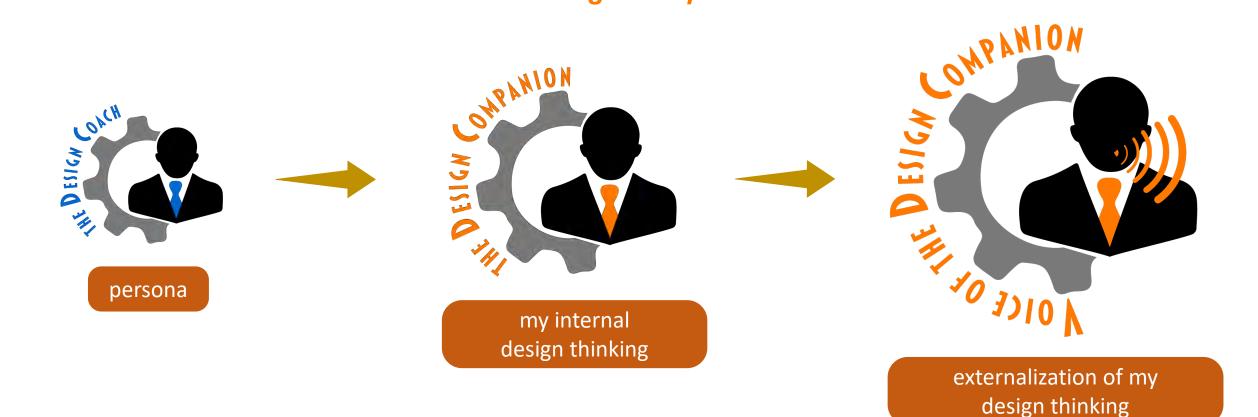
4

To design three visio and visio-haptic artifacts for use in teaching dimensional tolerancing with the intent of developing cognizance of Fit-basis tolerances and their micron-scale magnitudes.


To convey through a combination of self-reflective study and conventional academic description, the humanity and collected experience behind the design evolution of the three instructional artifacts.

Study Methodologies

Six-element methodology including design intent, research in human visio- and visio-haptic capabilities, design considerations, iterative ideation, final design, and discussion of artifacts.


A self-reflective study invoking the rhetorical Voice of the Design Companion to convey the evolution of design thinking, and to describe the evolution of artifacts.

Evolution of the rhetorical Voice of the Design Companion

Mechanical engineering design is a personal experience

Lived experience is involved in my mechanical engineering design.

- Engineering education
- Professional engineering experience
- Personal experiences (positive & negative) shape & shadow how I see, interact with, and experience everything
- How can lived experience, as it affects mechanical design engineering, be communicated in an academic work?

Communication style is personal

My natural writing style is as I teach, casual and using anecdotes.

- Anecdotes are a very personal communication. I am very much a part of the anecdotes that I share
- With anecdotes, I don't just tell you a story, I try to engage you in the story, making it a personal experience for you
- Anecdotes can effectively convey lived experience, which adds credibility for the listener

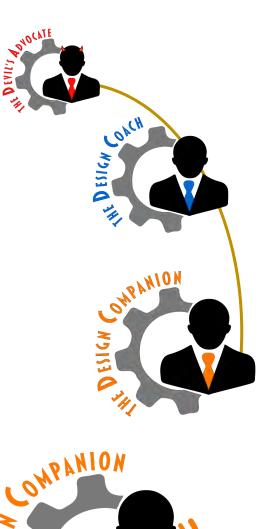
Conventional engineering academic writing is **not** personal

Qualitative research methodologies recognize the value of alternative forms of communication.

How can lived experience, as it affects mechanical design engineering, be communicated in an academic work?

Precedence for including the voice of the researcher

Self-study research recognizes that the researcher is inherently a part the subject being studied, and allows the use of the voice of the researcher in the reporting.


Shawn Wilson, an Indigenous Scholar, complemented conventional academic writing with his personal voice as a way of reflecting Indigenous Peoples' traditions of storytelling. He conveyed his voice in written form by addressing his words to his sons.

My Use of a rhetorical voice

- Allows a non-academic voice
- Allows use of anecdotes to explore how lived experiences contribute to design thinking

The Voice of the Design Companion communicates with Aubrey, an aggregate of AGC students

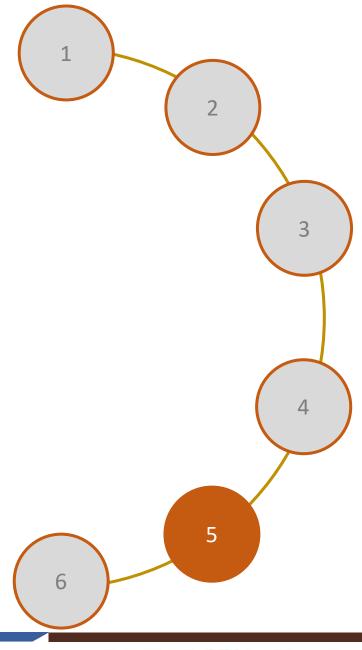
A Self-Reflective Design Study of Three Visio and Visio-Haptic Artifacts For Use in Mechanical Engineering Design Education

Graduat

Literature Review

Tolerance as Design Esoterica in Mechanical Engineering Education

- Design Esoterica in Mechanical Engineering Curricula
- Tolerancing as Esoterica in Mechanical Engineering Design
- Engineering Education A Brief History for Context
- Teaching and Learning of Dimensional Tolerancing
- Experiential Learning of Tolerancing
- Approaches to Teaching GD&T
- The Focus of Research in Tolerancing
- Visual and Somatosensory Perceptions of Small-Scale Magnitudes
- The Engineering Research Focusing on Haptic and Visio-Haptic Inputs


Use of Artifacts in Mechanical Engineering Design Education

- Use of Visual Artifacts in GD&T Instruction
- Design and Use of Artifacts in Mechanical Engineering Education
- Artifacts as Instructional Aids in Mechanical Engineering Education
- Considerations for the Design of Artifacts for Mechanical Engineering Education
- Considerations for Use of Physical Artifacts in Instructing Mechanical Design Esoterica

Faculty of

Graduate Studie

- 1 Introductions
- 2 Motivations
- 3 Gap Identification
- 4 Research Process
- 5 Outcomes
- 6 Future Work

Visio refers to vision-based input.

Haptic refers to touch-based input.

Visio-haptic refers to a combination of visual and touch input.

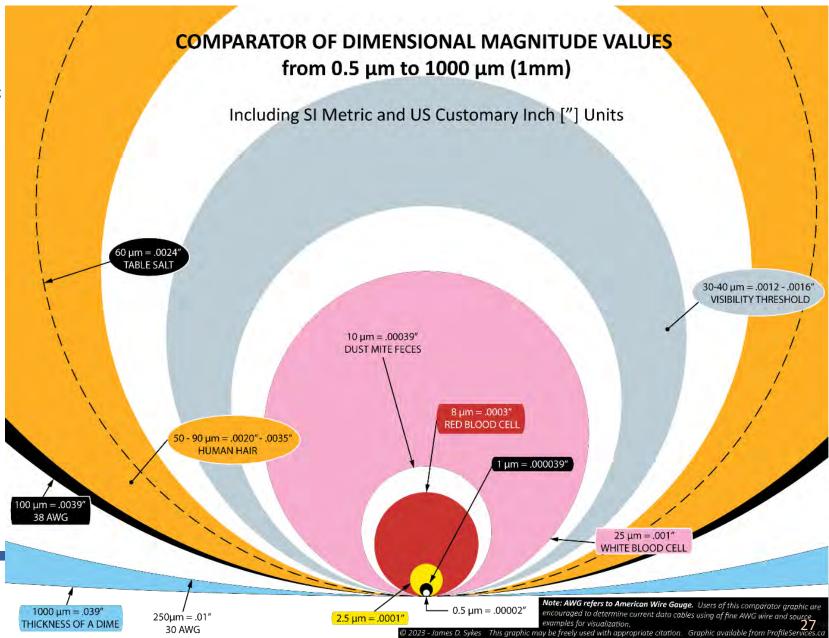
5 **Outcomes** Tolerance Instruction Aids

Three Visio & Visio-Haptic Instructional Aids

- 1. A visual comparison graphic of items that are both identifiable and relatable in the size range of 0.5µm to 1000µm
- 2. A primarily haptic demonstrator of the five clearance-Fit-Classes based on ASME B4.2 Preferred Fits
 - loose running
 - free running
 - close running
 - sliding

Transition and interference fits in ASME B4.2 are static engagements of components, providing no sensory distinction.

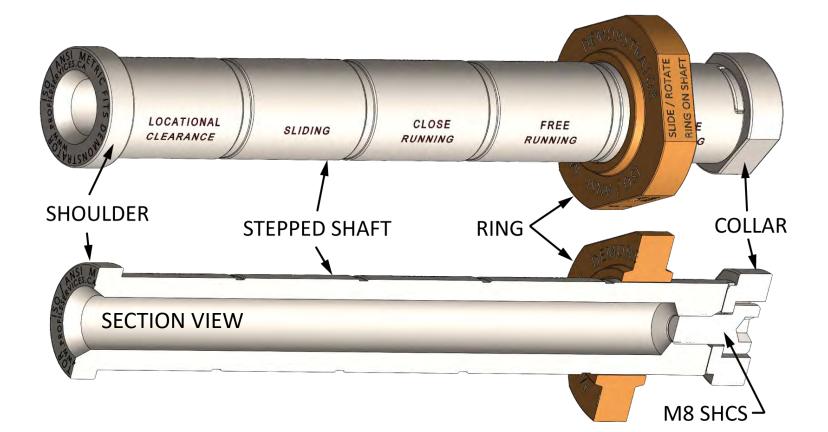
1. A visio-haptic demonstrator of micron-scale magnitudes from $0.5\mu m$ to $1000\mu m$


Artifact #1 A Visual Comparison Graphic

Artifact #1 A Visual Comparison Graphic

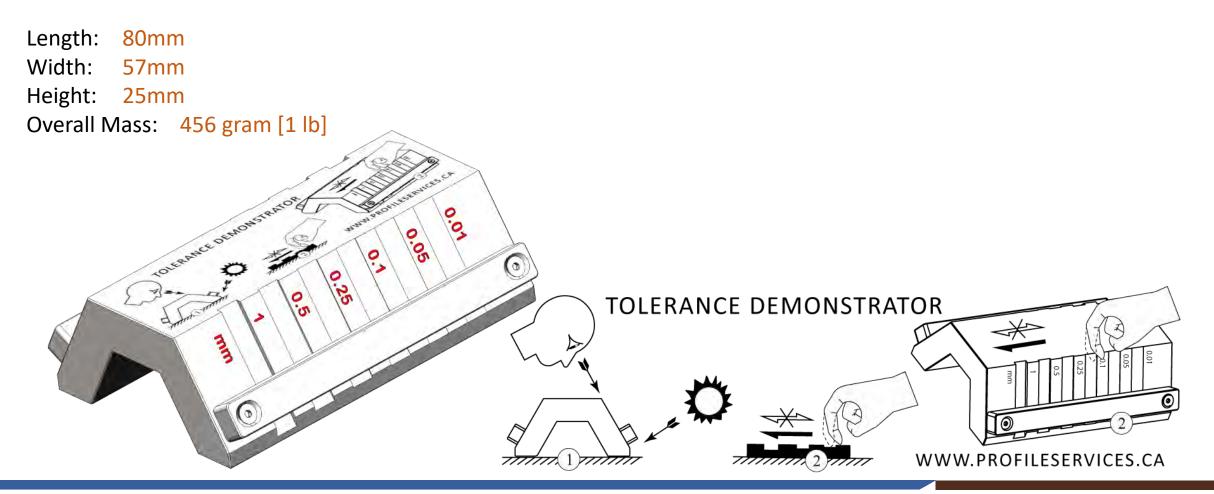
5

A visual comparison graphic of items that are both *identifiable* and *relatable* in the size range of $0.5-1000\mu$ m (0.001-1mm)



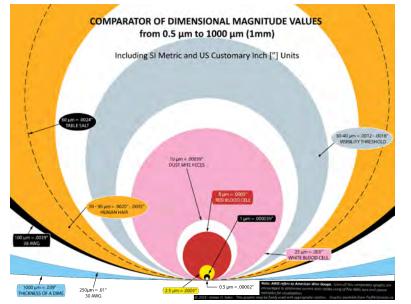
Artifact #2 A Primarily Haptic Demonstrator of Clearance Fit-Classifications (per ASME B4.2)

Artifact #2 A Primarily Haptic Demonstrator of Clearance Fit-Classifications (per ASME B4.2)

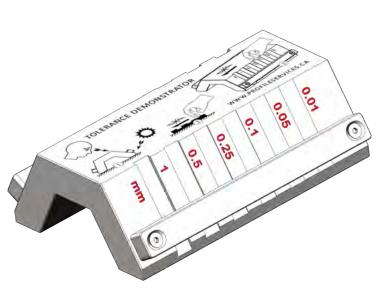


Faculty of Studies Graduate Studies

Artifact #3 A Visio-Haptic Demonstrator of Micron-Scale Magnitudes



Artifact #3 A Visio-Haptic Demonstrator of Micron-Scale Magnitudes


Three Visio & Visio-Haptic Instructional Aids

Artifact #2

A Primarily Haptic Demonstrator of Clearance Fit-Classifications (per ASME B4.2)

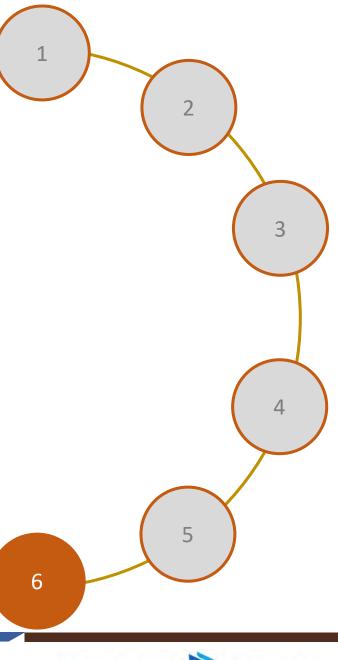
Artifact #3

A Visio-Haptic Demonstrator of Micron-Scale Magnitudes

Artifact #1

A Visual Comparison Graphic

5 **Outcomes** Self-Reflective Design Study


I explored why I am the way that I am. That understanding will adjust my expectations of others.

Through the Voice of the Design Companion, I have expressed my own thoughts and feelings. In many ways, these echo what other design engineers have shared with me, particularly in their early careers. I hope that others who read this may feel they are not alone.

Self-reflective writing is awkward and to me, unnatural. I rewrote most of the *Voice* dialog to Aubrey several times. Eventually, I found my writing reflecting my natural voice, the one that my actual students heard in our frequent, lengthy, out-of-class conversations that I found so enjoyable.

Faculty of | Studies | Graduate Studies | Hanitoba

- 1 Introductions
- 2 Motivations
- 3 Gap Identification
- 4 Research Process
- 5 Outcomes
- 6 Future Work

6 Future Work

Design Esoterica in general

- Explore what should be considered as mechanical engineering design esoterica.
- Inventory mechanical engineering design esoterica knowledge and skillsets in faculties and industry.

Tolerance artifacts from this study

- Physical production
- Study usability and effectiveness

Self-reflective study

• Explore various engineering design roles / personae: Devil's Advocate, Design Coach, etc.

A Self-Reflective Design Study of Three Visio and Visio-Haptic Artifacts For Use in Mechanical Engineering Design Education

University of Manitoba

Thank you for attending today.

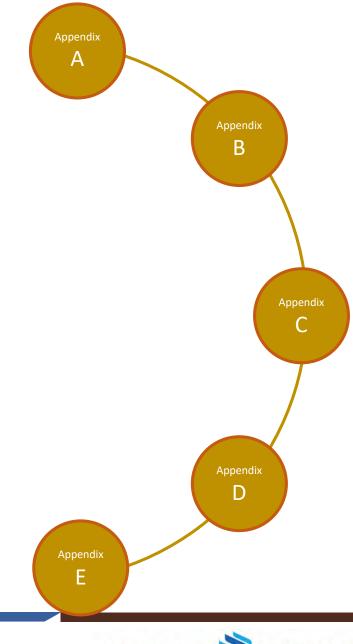
MSc Thesis Defense James Dillon Sykes, P.Eng.

March 24th, 2023

● University of Manitoba

Copyright

Images marked CC are public domain graphics, sourced from Creative Commons.


All other graphics © James Sykes 2023.

Presentation contents © James Sykes 2023.

Reproduction of content in its entirety or any part thereof, by any means, requires written authorization of author.

Appendix A	Design Considerations					
Appendix B	Artifact #1 Graphic					
Appendix C	Artifact #2 Specifications					
Appendix D	Artifact #3 Specifications					
Appendix E	ANSI / ASME B4.2					

Faculty of | Studies | Graduate Studies |

Artifact Design Considerations

General Artifact Design Considerations

C#	Consideration Query
C1	What are the instructional goals for the artifact?
C1 C2 C3 C4 C5 C6 C7 C8	What are the learning goals for the artifact?
C1 V V C2 A In C3 t In C3 t In C3 t In C4 In C5 F C5 F C7 F t C8 V C9 IN C9 IN	Are all features incorporated into the artifact meaningful in their use?
	If not, can they be excluded from the artifact?
	Are there other existing artifacts, individually or collectively, representing
	the same concepts?
	If so, explain why this new artifact design is needed.
	Is the artifact design rooted in a predecessor?
	If so, identify predecessor and describe insights (strengths and
	deficiencies) carried over to the new artifact.
	How is the artifact broadly useful?
CS	If not, identify specific limitations (sizes, conditions, etc.).
	How has the artifact been designed to be extended in use from the
CO	particular context to additional practical uses?
 C1 What are the learning goals for the artifact? C2 Are all features incorporated into the artifact meaningful in their use? If not, can they be excluded from the artifact? Are there other existing artifacts, individually or collectively, represent the same concepts? If so, explain why this new artifact design is needed. Is the artifact design rooted in a predecessor? C4 If so, identify predecessor and describe insights (strengths and deficiencies) carried over to the new artifact. C5 How is the artifact broadly useful? If not, identify specific limitations (sizes, conditions, etc.). How has the artifact been designed to be extended in use from the particular context to additional practical uses? C7 How is the underlying technical concept clear and distinguishable from the physical details of the artifact? C8 What are the specific design elements and functionalities represented the artifact? C9 immediately apparent? Explain any changes to the artifact that are necessary. 	How is the underlying technical concept clear and distinguishable from
	the physical details of the artifact?
	the artifact?
C9	immediately apparent?
	Explain any changes to the artifact that are necessary.
C10	How are critical and non-critical physical characteristics of the artifact
C10	differentiated?

C#	Consideration Query									
C11	What is the anticipated usage environment (lighting, temperature,									
CII	hygiene, other)?									
C12	What sensory inputs are anticipated in the artifact's use?									
CIZ	Visual / Olfactory / Haptic / Auditory / Taste / Other									
C13	3 How are intended functionalities of artifact made explicit?									
C14	What other artifacts should / must be chained with this artifact to									
	convey the core concept?									
C15	What other chain of artifacts may this artifact be added into or									
C15	substituted to convey a core concept?									
C16	Will the artifact be produced physically?									
C10	How will the artifact be incorporated into teaching?									
C17	What are the limitations of useability based on location, disability,									
C17	capability, or capacity?									
	How does the artifact design encourage a critical evaluation of merits									
C18	and concerns about the elements demonstrated?									
C10										
	How may the artifact be used in group discussion?									
C19	How do you anticipate the user's perspective and understanding of the									
C19	various elements to evolve as they engage with the artifact?									
	Is the technical nature of the artifact effectively documented and									
C20	communicated such that instructors can readily understand and use the									
	artifact?									

Artifact Design Considerations

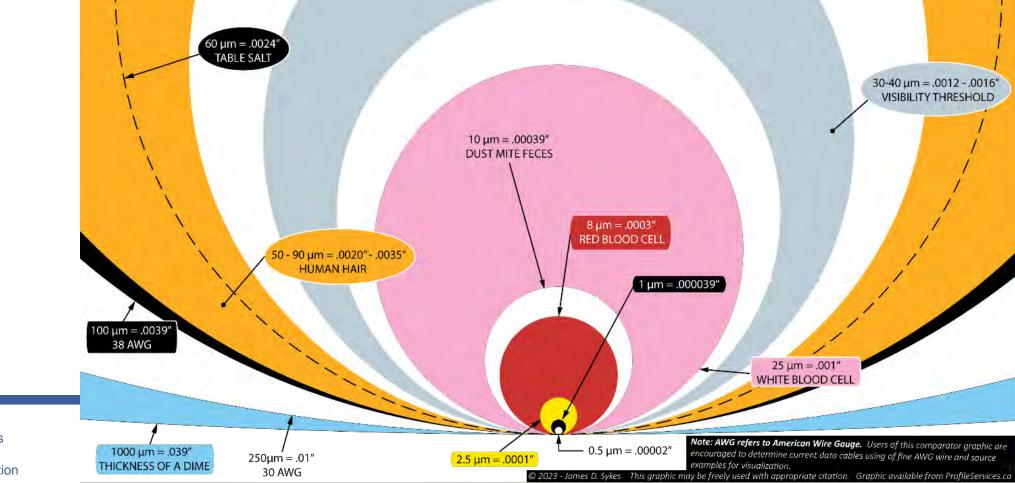
Tolerance Artifact Design Considerations

C#	Consideration
	Safety
C# C21 C22 C23 C24 C25	Injuries - Significant Potential
C21	Injuries - Moderate Potential
	Injuries - Low Potential
	Ergonomics
	Vision
C22	Finger size
	Weight Limit
	Size Limits
	Operating / Usage
C23	Lubrication
	Hygiene
	Static / Dynamic
C24	Assembly
	Complexity
024	Features
	Techniques
C25	Design Complexity
	Aesthetics and Handling
	Colours
C26	Chamfer / Radius / Sharp Edges
	Surface Reflectivity
	Text Format

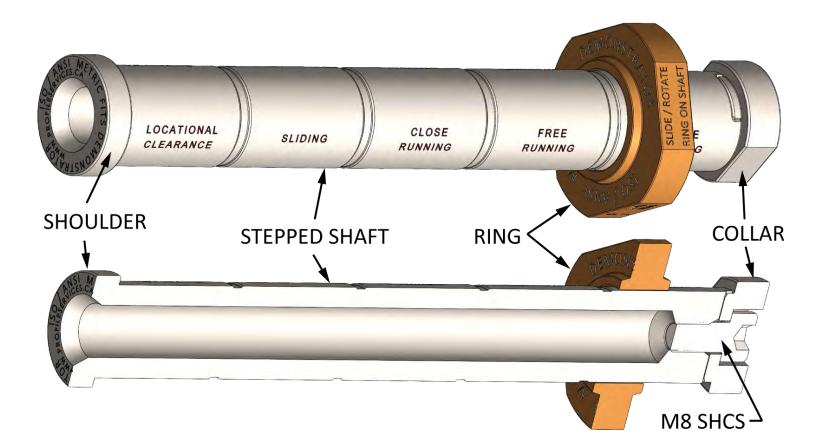
C#	Consideration
	Communications - instructions
	Pack/ Unpack
C27	Handling
	Use / Operation
	Learning Goals
	Maintenance
	Material
630	Durability
C28	Corrosion
	Lubrication
	Manufacturing
	Design Complexity
C29	Processes
C29	Tolerance Requirement
	Surface Finish
	Markings
	Shipping
630	Method
C30	Packaging Type
	Size
C31	Design Rules of Thumb
C32	Reference Artifacts

A Self-Reflective Design Study of Three Visio and Visio-Haptic Artifacts For Use in Mechanical Engineering Design Education

Appendix A

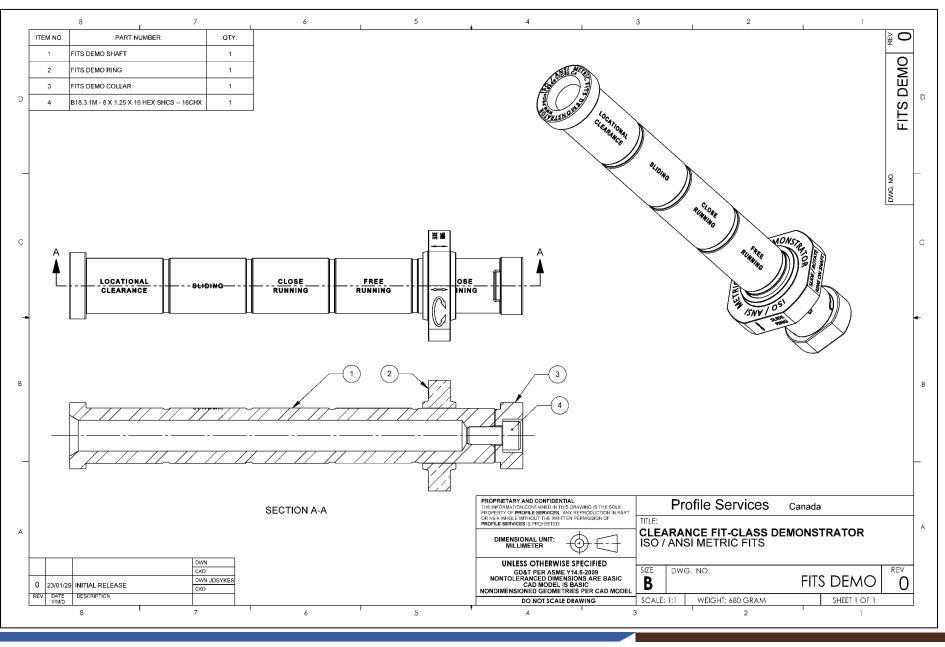


Appendix B

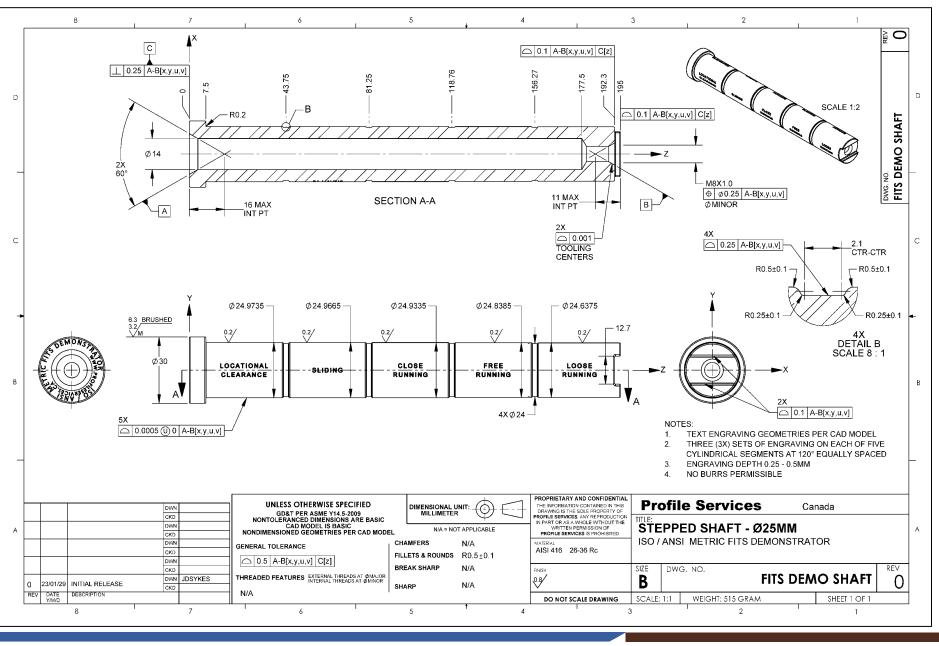

Artifact #1 Graphic

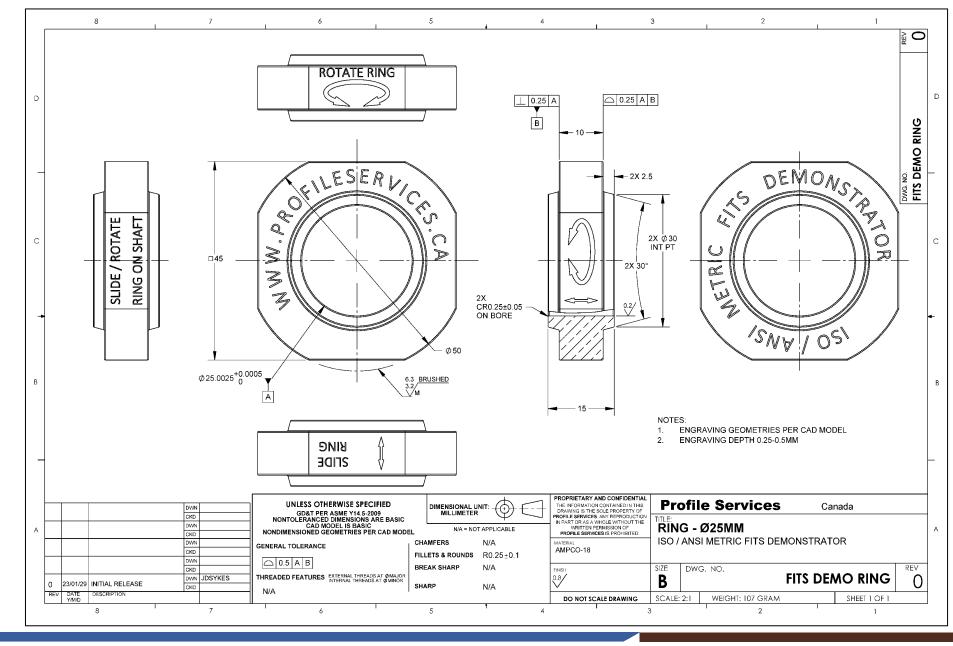
COMPARATOR OF DIMENSIONAL MAGNITUDE VALUES from 0.5 μm to 1000 μm (1mm)

Including SI Metric and US Customary Inch ["] Units

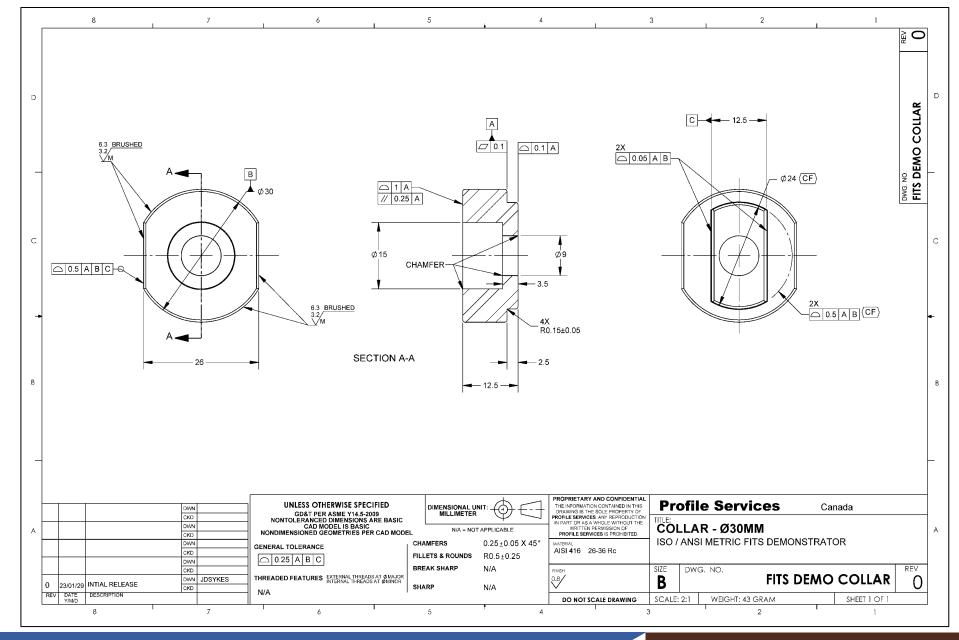

Appendix C Artifact #2 Specifications

Appendix C


Artifact #2 Specifications

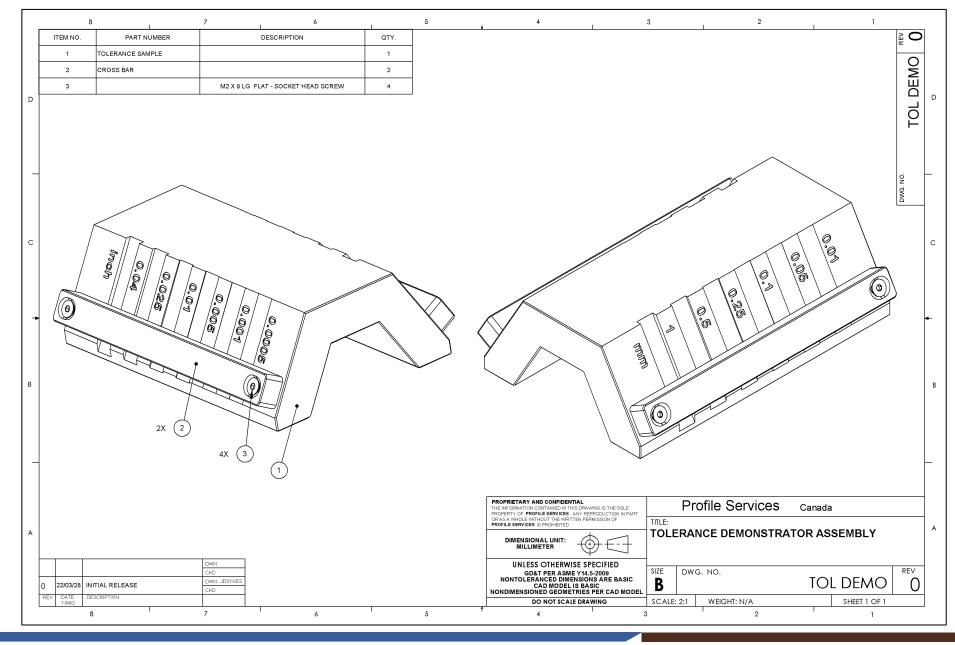

Artifact #2 Specifications

Appendix C

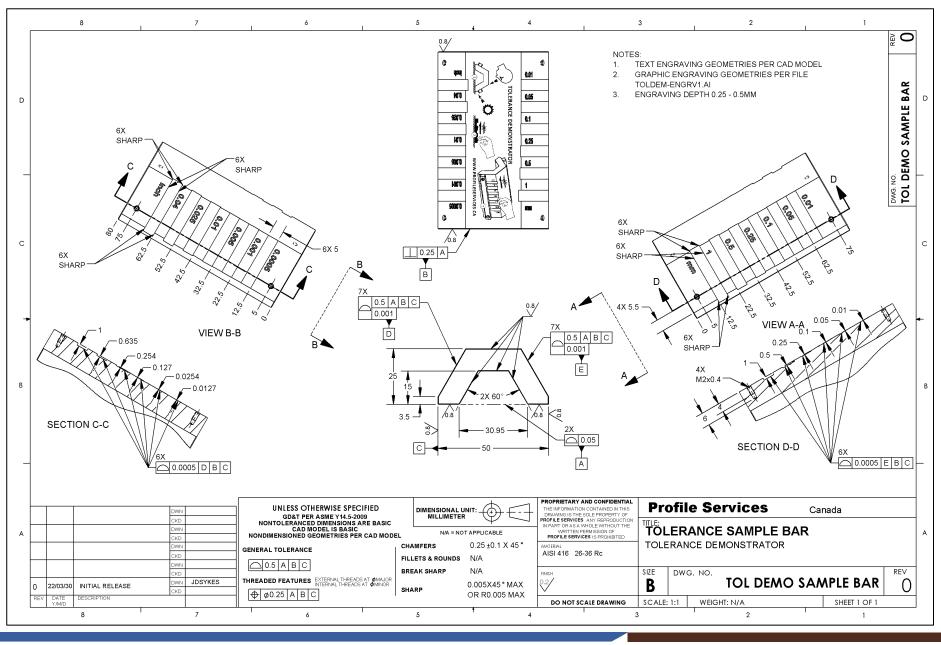

Artifact #2 Specifications

Appendix C

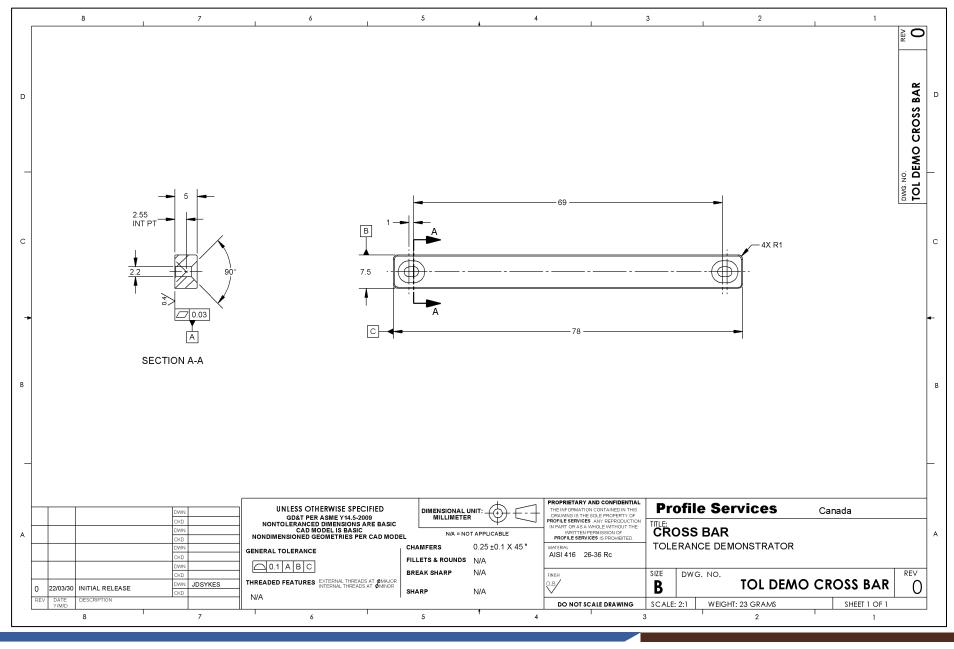
Artifact #2 Specifications



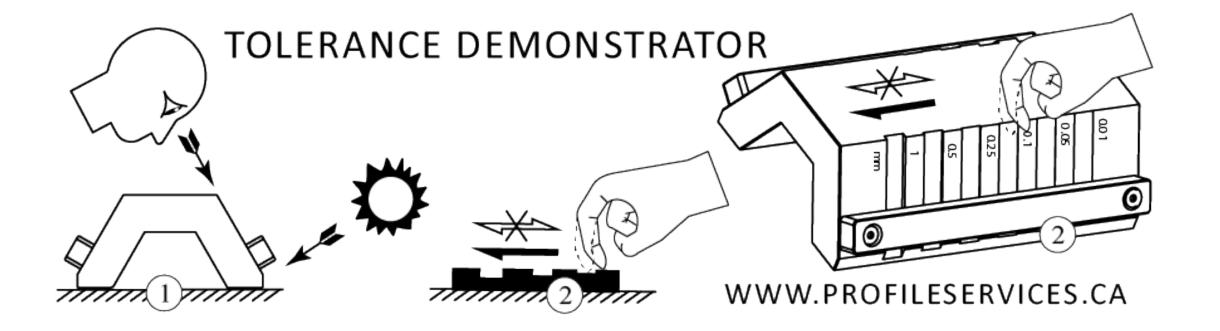
Appendix D Artifact #3 Specifications



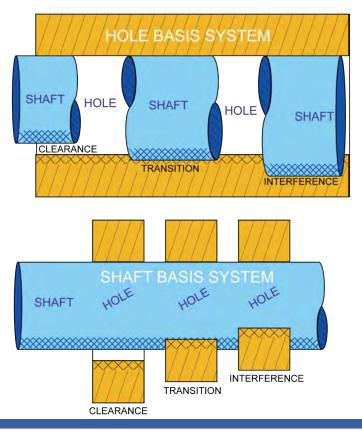
Artifact #3 Specifications



Artifact #3 Specifications


Artifact #3 Specifications

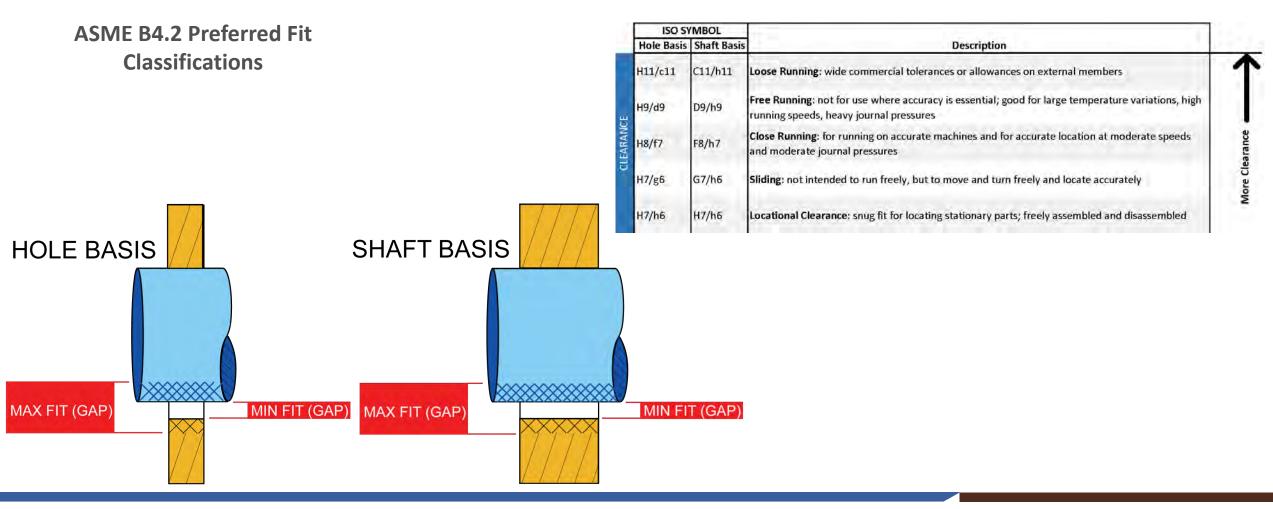
Artifact #3 Specifications



Appendix E

ANSI / ASME B4.2

ASME B4.2 Preferred Fit Classifications


A Self-Reflective Design Study of Three Visio and Visio-Haptic Artifacts For Use in Mechanical Engineering Design Education

		'MBOL	
		Shaft Basis	Description
	H11/c11	C11/h11	Loose Running: wide commercial tolerances or allowances on external members
Щ	H9/d9	D9/h9	Free Running : not for use where accuracy is essential; good for large temperature variations, high running speeds, heavy journal pressures
CLEARANCE	H8/f7	F8/h7	Close Running : for running on accurate machines and for accurate location at moderate speeds and moderate journal pressures
O	H7/g6	G7/h6	Sliding: not intended to run freely, but to move and turn freely and locate accurately
	H7/h6	H7/h6	Locational Clearance: snug fit for locating stationary parts; freely assembled and disassembled
TRANSITION	H7/k6	K7/h6	Locational Transition: for accurate location; a compromise between clearance and interference
TRAN	H7/n6	N7/h6	Locational Transition: for more accurate location where greater interference is permissible
INCE	H7/p6*	P7/h6	Locational Interference : for parts requiring rigidity and alignment with prime accuracy of location but without special bore pressure requirements
INTERFERENCE	H7/s6	S7/h6	Medium Drive : for ordinary steel parts or shrink fits on light sections; the tightest fit usable with cast iron
Z	H7/u6	U7/h6	Force: for parts that can be highly stressed or for shrink fits where the heavy pressure forces required are impractical

* Transition fit for nominal sizes from 0 thru 3mm.

5 **Resolution** Artifact Design

Artifact #2 A Primarily Haptic Demonstrator of Clearance Fit-Classifications (per ASME B4.2)

Appendix E

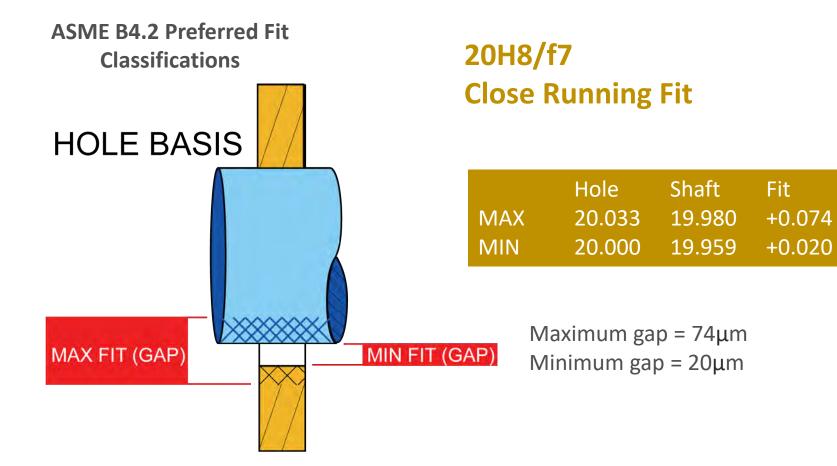
ASME B4.2 Preferred Fit

ANSI/ASME B4.2

Hole Basis 20H8/f7

	Class	ifications				y's Handbo tandard Pre	A REAL PROPERTY OF A REAL PROPER		on 18 March 20 etric Clear	1.94	ANSI B4.2-	1978 (R1984)					
				Loose Running		rree kunning			Close Running			Sliding			Locational Clearance			
HOLE BASIS			Basic Size *	Hole H11	Shaft c11	Fit [†]	Hole H9	Shaft d9	Fit [†]	Hole H8	Shaft f7	Fit [†]	Hole H7	Shaft g6	Fit ¹	Hole H7	Shaft hó	Fit [†]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1.025	0.980	+ 0.070 + 0.020	1.014 1.000	0.994 0.984	+ 0.030 + 0.006	1.010 1.000	0.998	+ 0.018 + 0.002	1.010 1.000	1.000 0.994	+ 0.010
			1.2 Max	1.260 1.200	1,140	+ 0.180 + 0.060	1.225 1.200	1.180 1.155	+ 0.070 + 0.020	1.214 1.200	1.194 1.184	+ 0.030 + 0.006	1.210 1.200	1,198 1,192	+ 0.018 + 0.002	1.210 1.200	1.200 1.194	+ 0.010
				1.660 1.600	1.540	+ 0.180 + 0.060	1.625	1.580 1.555	+ 0.070 + 0.020	1.614	1.594 1.584	+ 0.030 + 0.006	1.610	1.598 1.592	+ 0.018 + 0.002	1.610	1.600	+ 0.010
AX FIT (GA		MIN FIT (GAP)	2 Max Min	2.060 2.000	1.940 1.880	+ 0.180 + 0.060	2.025 2.000	1.980 1.955	+ 0.070 + 0.020	2.014 2.000	1.994 1.984	+ 0.030 + 0.006	2.010 2.000	1.998 1.992	+ 0.018 + 0.002	2.010 2.000	2.000 1.994	+ 0.016
		\sim	2.5 Max	2.560 2.500	2.440	+ 0.180 + 0.060	2.525 2.500	2.480 2.455	+ 0.070 + 0.020	2.514 2.500	2.494 2.484	+ 0.030 + 0.006	2.510 2.500	2.498 2.492	+ 0.018 + 0.002	2.510 2.500	2.500 2.494	+ 0.010
			3 Max	3.060	2.940	+ 0.180	3.025	2.980	+ 0.070 + 0.020	3.014 3.000	2.994	+ 0.030 + 0.006	3.010 3.000	2.998	+ 0.018 + 0.002	3.010 3.000	3.000	+ 0.016
	YMBOL Shaft Basis	-	Description					3.970	+ 0.090 + 0.030	4.018	3.990 3.978	+ 0.040 + 0.010	4.012	3.996	+ 0.024 + 0.004	4.012	4.000	+ 0.020
H11/c11	C11/h11	Loose Running: wide commercial toleranc	Loose Running: wide commercial tolerances or allowances on external members						+ 0.090 + 0.030	5.018	4.990 4.978	+ 0.040 + 0.010	5.012	4.996	+ 0.024 + 0.004	5.012	5.000	+ 0.020
H9/d9	D9/h9	Free Running: not for use where accuracy is essential; good for large temperature variations, high running speeds, heavy journal pressures						4.940 5.970 5.940	+ 0.090 + 0.030	6.018 6.000	5.990 5.978	+ 0.040 + 0.010	6.012 6.000	5.996 5.988	+ 0.024 + 0.004	6.012 6.000	6.000 5.992	+ 0.020 + 0.000
H8/f7	F8/h7	Close Running: for running on accurate machines and for accurate location at moderate speeds and moderate journal pressures Sliding: not intended to run freely, but to move and turn freely and locate accurately						7.960 7.924 9.960	+ 0.112 + 0.040 + 0.112	8.022 8.000 10.022	0 7.9 2 9.9 2 9.9 0 9.9 0 9.9 0 9.9 0 9.9		Shaft	ft Fit 0.02 0.00 0.02 0.02 0.02 0.02				
H7/g6	G7/h6							9.924	+ 0.040 + 0.136	10.022			20.033 19.9					
H7/h6	H7/h6	Locational Clearance: snug fit for locating	Wo	1.907 5.950	+ 0.050 + 0.136	12.000	11.9 15.9 15.966 + 0.016 1			20.000 19.9		59 +0.020 <mark>0.0</mark>		0.02				
			20 Max Min	20.130	19.890 19.760	+ 0.370	20,052 20.000	5.907 19.935 19.883	+ 0.050 + 0.169 + 0.065	16,000 20,033 20,000	19,980	+ 0.016 + 0.074 + 0.020	16.000 20.021 20.000	15.983 19.993 19.980	+ 0.006 + 0.041 + 0.007	16.000 20.021 20.000	15.989 20.000 19.987	+ 0.00 + 0.03 + 0.00

Three Visio and Visio-Haptic Artifacts For Use in


Mechanical Engineering Design Education

* The sizes shown are the first choice basic sizes. Preferred fits for other sizes can be calculated from data given in ANSI B4.2-1978 (R1984).

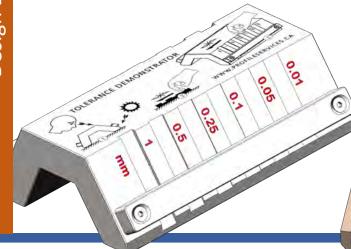
7 Fits: + Indicates CLEARANCE / - Indicates INTERFERENCE

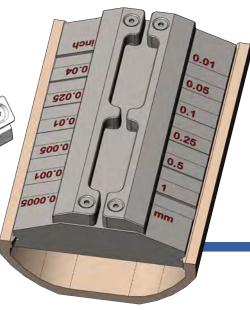
NOTE: The information in this table has not been verified for accuracy. This information is provided for educational purposes only, and must be verified before use in practice.

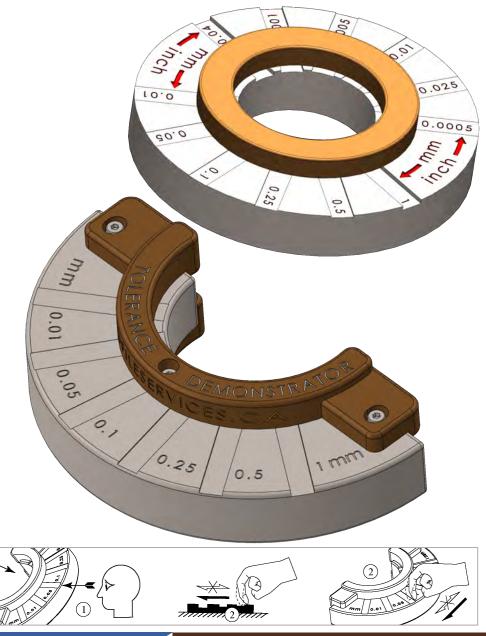
A Self-Reflective Design Study of Three Visio and Visio-Haptic Artifacts For Use in Mechanical Engineering Design Education

University of Manitoba

MSc Thesis Defense James Dillon Sykes, P.Eng.


March 24th, 2023


5 **Resolution**


Design Elegance generally suggests an evident clarity or cleanliness of the design beyond what a typical practitioner would derive.

It often reflects a simplified solution that addresses the core requirements with an element of flair that elevates the design stylistically or aesthetically above mere functionality.

Design elegance is a coveted status in mechanical design engineering.

